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Introduction

The analysis and derivation of algorithms in the matrix computation area
requires a facility with certain aspects of linear algebra. Some of the basics
such as Independence, Subspace, Basis, and Dimension are revieweds.

We next discuss a notion called, norm. Norms serve the same purpose on
vector spaces that absolute value does on the real line: they furnish a
measure of distance. More precisely, Rn together with a norm on Rn

defines a metric space.

Therefore, we have the familiar notions of neighborhood, open sets,
convergence, and continuity when working with vectors and vector-valued
functions.
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Independence, Subspace, Basis, and Dimension

A set of vectors {a1, . . . , an} in Rm is linearly independent if∑n
j=1 αjaj = 0 implies α(1 : n) = 0. Otherwise, a nontrivial combination

of the ai is zero and {a1, . . . , an} is said to be linearly dependent.

A subspace of Rm is a subset that is also a vector space. Given a
collection of vectors a1, . . . , an ∈ Rm, the set of all linear combinations of
these vectors is a subspace referred to as the span of {a1, . . . , an}:

span{a1, . . . , an} =


n∑

j=1

βjaj : βj ∈ R

 .

If {a1, . . . , an} is independent and b ∈ span{a1, . . . , an}, then b is a
unique linear combination of the aj .
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Independence, Subspace, Basis, and Dimension (Contd...)

If S1, . . . ,Sk are subspaces of Rm, then their sum is the subspace defined
by S = {a1 + a2 + · · ·+ ak : ai ∈ Si , i = 1 : k}. S is said to be a direct
sum if each v ∈ S has a unique representation v = a1 + · · ·+ ak with
ai ∈ Si . In this case we write S = S1⊕ · · · ⊕ Sk . The intersection of the Si
is also a subspace, S = S1 ∩ S2 ∩ . . . ∩ Sk .

The subset {ai1 , . . . , aik} is a maximal linearly independent subset of
{a1, . . . , an} if it is linearly independent and is not properly contained in
any linearly independent subset of {a1, . . . , an}. If {ai1 , . . . , aik} is
maximal, then span{a1, . . . , an} = span{ai1 , . . . , aik} and {ai1 , . . . , aik} is a
basis for span{a1, . . . , an}. If S ⊆ Rm is a subspace, then it is possible to
find independent basic vectors a1, . . . , ak ∈ S such that
S = span{a1, . . . , ak}. All bases for a subspace S have the same number
of elements. This number is the dimension and is denoted by dim(S).
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Range, Null Space, and Rank

There are two important subspaces associated with an m-by-n matrix A.
The range of A is defined by

ran(A) = {y ∈ Rm : y = Ax for some x ∈ Rn},

and the null space of A is defined by

null(A) = {x ∈ Rn : Ax = 0}.

If A = [a1, · · · , an] is a column partitioning, then

ran(A) = span{a1, . . . , an}

The rank of a matrix A is defined by

rank(A) = dim(ran(A)).

It can be shown that rank(A) = rank(AT ). We say that A ∈ Rm×n is rank
deficient if rank(A) < min{m, n}. If A ∈ Rm×n, then

dim(null(A)) + rank(A) = n.
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Matrix Inverse

The n-by-n identity matrix In is defined by the column partitioning

In = [e1, . . . , en]

where ek is the kth “canonical” vector:

ek = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

)T .

The canonical vectors arise frequently in matrix analysis and if their

dimension is ever ambiguous, we use superscripts, i.e., e
(n)
k ∈ Rn.

If A and X are in Rn×n and satisfy AX = I , then X is the inverse of A and
is denoted by A−1. If A−1 exists, then A is said to be nonsingular.
Otherwise, we say A is singular.
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Matrix Inverse (Contd...)

Several matrix inverse properties have an important role to play in matrix
computations. The inverse of a product is the reverse product of the
inverses:

(AB)−1 = B−1A−1. (1)

The transpose of the inverse is the inverse of the transpose:

(A−1)T = (AT )−1 ≡ A−T . (2)

The identity
B−1 = A−1 − B−1(B − A)A−1 (3)

shows how the inverse changes if the matrix changes.
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Matrix Inverse (Contd...)

The Sherman-Morrison-Woodbury formula gives a convenient expression
for the inverse of (A + UV T ) where A ∈ Rn×n and U and V are n-by-k :

(A + UV T )−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1. (4)

A rank k correction to a matrix results in a rank k correction of the
inverse. In (4) we assume that both A and (I + V TA−1U) are nonsingular.

Any of these facts can be verified by just showing that the “proposed”
inverse does the job. For example, here is how to confirm (3):

B(A−1 − B−1(B − A)A−1) = BA−1 − (B − A)A−1 = I .
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Determinant

If A = (a) ∈ R1×1, then its determinant is given by det(A) = a. The
determinant of A ∈ Rn×n is defined in terms of order n − 1 determinants:

det(A) =
n∑

j=1

(−1)j+1a1j det(A1j).

Here, A1j is an (n− 1)-by-(n− 1) matrix obtained by deleting the first row
and jth column of A. Useful properties of the determinant include

det(AB) = det(A) det(B) A,B ∈ Rn×n

det(AT ) = det(A) A ∈ Rn×n

det(cA) = cn det(A) c ∈ R,A ∈ Rn×n

det(A) 6= 0⇔ A is nonsingular A ∈ Rn×n
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Differentiation

Suppose α is a scalar and that A(α) is an m-by-n matrix with entries
aij(α). If aij(α) is a differentiable function of α for all i and j , then by
Ȧ(α) we mean the matrix

Ȧ(α) =
d

dα
A(α) =

(
d

dα
aij(α)

)
= (ȧij(α)).

The differentiation of a parameterized matrix turns out to be a handy way
to examine the sensitivity of various matrix problems.
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Exercises

Exercises 1.

1. Show that if A ∈ Rm×n has rank p, then there exists an X ∈ Rm×n

and a Y ∈ Rn×p such that A = XY T , where
rank(X ) = rank(Y ) = p.

2. Suppose A(α) ∈ Rm×r and B(α) ∈ Rr×n are matrices whose entries
are differentiable functions of the scalar a. Show

d

dα
[A(α)B(α)] =

[
d

dα
A(α)

]
B(α) + A(α)

[
d

dα
B(α)

]
.

3. Suppose A(α) ∈ Rn×n has entries that are differentiable functions of
the scalar α. Assuming A(α) is always nonsingular, show

d

dα
[A(α)−1] = −A(α)−1

[
d

dα
A(α)

]
A(α)−1.
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Exercises (Contd...)

Exercises 2.

4. Suppose A ∈ Rn×n, b ∈ Rn and that φ(x) = 1
2x

TAx − xTb. Show
that the gradient of φ is given by ∇φ(x) = 1

2(AT + A)x − b.

5. Assume that both A and A + uvT are nonsingular where A ∈ Rn×n

and u, v ∈ R. Show that if x solves (A + uvT )x = b, then it also
solves a perturbed right hand side problem of the form Ax = b + αx.
Give an expression for α in terms of A, u, and v.
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Definition of Vector Norm

A vector norm on Rn is a function f : Rn → R that satisfies the following
properties:

f (x) ≥ 0 x ∈ Rn, (f (x) = 0 iff x = 0)

f (x + y) ≤ f (x) + f (y) x , y ∈ Rn

f (αx) = |α|f (x) α ∈ R, x ∈ Rn

We denote such a function with a double bar notation: f (x) = ‖x‖.
Sub-scripts on the double bar are used to distinguish between various
norms.

A useful class of vector norms are the p-norms defined by

‖x‖p = (|x1|p + · · ·+ |xn|p)
1
p p ≥ 1. (5)
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Various Norms

Of these the 1, 2, and ∞ norms are the most important:

‖x‖1 = |x1|+ · · ·+ |xn|

‖x‖2 = (|x1|2 + · · ·+ |xn|2)
1
2 = (xT x)

1
2

‖x‖∞ = max
1≤i≤n

|xi |

A unit vector with respect to the norm ‖ · ‖ is a vector x that satisfies
‖x‖ = 1.

P. Sam Johnson Basic Ideas from Linear Algebra and Vector Norms 14/21



Some Vector Norm Properties

A classic result concerning p-norms is the Holder inequality:

|xT y | ≤ ‖x‖p‖y‖q
1

p
+

1

q
= 1. (6)

A very important special case of this is the Cauchy-Schwartz inequality:

|xT y | ≤ ‖x‖2‖y‖2. (7)

All norms on Rn are equivalent, i.e., if ‖ · ‖α and ‖ · ‖β are norms on Rn,
then there exist positive constants, c1 and c2 such that

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α (8)

for all x ∈ Rn.
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Some Vector Norm Properties

For example, if x ∈ Rn, then

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 (9)

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞ (10)

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞. (11)
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Absolute and Relative Error

Suppose x̂ ∈ Rn is an approximation to x ∈ Rn. For a given vector norm
‖ · ‖ we say that

εaba = ‖x̂ − x‖

is the absolute error in x̂ . If x 6= 0, then

εrel =
‖x̂ − x‖
‖x‖

prescribes the relative error in x̂ . Relative error in the ∞-norm can be
translated into a statement about the number of correct significant digits
in x̂ . In particular, if

‖x̂ − x‖∞
‖x‖∞

≈ 10−p,

then the largest component of x̂ has approximately p correct significant
digits.
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Absolute and Relative Error (Contd...)

Example 3.

If x = (1.234 .05674)T and x̂ = (1.235 .05128)T , then

‖x̂ − x‖∞
‖x‖∞

≈ .0043 ≈ 10−3.

Note than x̂1 has about three significant digits that are correct while only
one significant digit in x̂2 is correct.

We say that a sequence {x (k)} of n-vectors converges to x if

lim
k→∞

‖x (k) − x‖ = 0.

Note that because of (8), convergence in the α-norm implies convergence
in the β-norm and vice versa.
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Exercises

Exercises 4.

1. Show that if x ∈ Rn, then limp→∞ ‖x‖p = ‖x‖∞.

2. Prove the Cauchy-Schwartz inequality (7) by considering the
inequality 0 ≤ (ax + by)T (ax + by) for suitable scalars a and b.

3. Verify that ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ are vector norms.

4. Verify (9)-(11). When is equality achieved in each result?

5. Show that in Rn, x (i) → x if and only if x
(i)
k → xk for k = 1 : n.

6. Show that any vector norm on Rn is uniformly continuous by verifying
the inequality | ‖x‖ − ‖y‖ | ≤ ‖x − y‖.

7. Let ‖ · ‖ be a vector norm on Rm and assume A ∈ Rm×n. Show that
if rank(A) = n, then ‖x‖A = ‖Ax‖ is a vector norm on Rn.
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Problems

Exercises 5.

8. Let x and y be in Rn and define ψ : R→ R by ψ(α) = ‖x − αy‖2.
Show that ψ is minimized when α = xT y/yT y.

9. (a) Verify that ‖x‖p = (|x1|p + · · ·+ |xn|p)
1
p is a vector norm on Cn.

(b) Show that if x ∈ Cm then ‖x‖p ≤ c (‖Re(x)‖p + ‖Im(x)‖p).
(c) Find a constant cn such that cn(‖Re(x)‖2 + ‖Im(x)‖2) ≤ ‖x‖2 for all

x ∈ Cm.

10. Prove or disprove:

v ∈ Rn ⇒ ‖v‖1‖v‖∞ ≤
1 +
√
n

2
‖v‖2.
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